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Abstract: The equationx′′ = −a(x − x3) (i) is considered together with the boundary conditionsx′(0) =
0, x′(1) = 0 (ii), x′(0) = 0, x′(T ) = 0 (iii). The exact number of solutions for the boundary value problems
(BVP) (i), (ii) and (i), (iii) is given. The problem of finding the initial valuesx0 = x(0) of solutions to the problem
(i), (iii) is solved also.

Key–Words:Boundary value problem, Jacobian elliptic functions, cubic nonlinearity, phase trajectory, multiplicity
of solutions

1 Introduction
The cubic complex Ginzburg - Landau equation

∂tA = A + (1 + ib)4A + (1 + ic)|A|2A,

appears in numerous descriptions of remarkable phys-
ical phenomena. It suffices to mention the supercon-
ductivity theory [6]. A survey of multiple applications
can be found in [2] and [11]. Stationary solutions of
“real” Ginzburg - Landau equation [2]

∂tA = A +4A− |A|2A
generate various problems for ordinary differential
equations. It was mentioned in the work [9] that there
are lacking in the literature the results on boundary
value problems that arise in Ginzburg - Landau the-
ory of superconductivity. Namely, the boundary value
problem

x′′ = −a(x− x3), (1)

x′(0) = 0, x′(1) = 0 (2)

was mentioned and the problem of finding the initial
valuesx0 of solutions of the problem (1),

x′(0) = 0, x′(T ) = 0, (3)

that is interpreted as “eigenvalue” problem. Our intent
is to fill this gap.

First, we analyze the problem and provide the ex-
act number of solutions depending on the parameter
a. Despite of the fact that the phase portrait of the
equation is very well known we are unaware of the

proof that exact number of solutions to the Neumann
problem depends entirely on the properties of solu-
tions of the linearized equation around the zero equi-
librium point. To prove this, monotonicity of a period
for closed trajectories lying in G (the region of a phase
plane between two heteroclinic trajectories) must be
proved first. Second, using the theory of Jacobian el-
liptic functions, we give explicit expressions for solu-
tions of the problem. Avoiding cumbersome formulas
provided by symbolic computation software. Gener-
ally it is known that solutions of the equation can be
expressed in terms of the Jacobian elliptic functions.
However, it is nor easy nor convenient to get the re-
spective formulas explicitly. Only few sources pro-
vide the related information and generally are useless
in specific contexts like the Neumann boundary value
problem. Standard software provides general expres-
sions that are not easy to use in order to get explicit
analytical formulas for specific cases under consider-
ation. Formulas for solutions of the quadratic equation
are quite different for solutions that behave differently
in different subsets of a phase plane. For instance, no
solutions of the Neumann BVP can exist (if speaking
about the trajectories of solutions) outside the region
G. We made all the necessary computations for the
Neumann problem by ourselves and the results look
quite satisfactory. The explicit formula for solutions
of the respective Cauchy problem was obtained.

In order to study the problem numerically approx-
imations of the initial values for possible solutions are
needed. We derived the equation for finding the ini-
tial valuesx0 of solutions to the Neumann problem.
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These formulas involve several Jacobian elliptic func-
tions and can be used to effectively find the initial val-
ues of solutions. The initial conditions of the Neu-
mann problem (1), (2) can be found easily now as ze-
ros of some one argument function. The advantages of
the proposed approach are demonstrated considering
the example in the final section.

2 Phase portrait

First consider equation (1). The phase portrait is well-
known. There are three critical points of equation (1)
at x1,3 = ±1, x2 = 0. The origin is a center and
x1,3 = ±1 both are saddle points. Two heteroclinic
trajectories connect the two saddle points, Fig. 1.

Figure 1:The phase portrait of equation (1), shaded is the region
G

Any solution of (1) satisfies the “energy” relation

x′2(t) = −ax2(t) +
1
2
ax4(t) + C, (4)

whereC is an arbitrary constant. It is clear from the
analysis of the phase portrait that solutions (trajecto-
ries) of the Neumann problem can exist only in the
region (we denote itG) between the heteroclinic tra-
jectories.

3 Monotonicity result

Denote open region bounded by the two heteroclinic
trajectories connecting saddle points byG. Consider
trajectories (closed curves) that fill the regionG. The
heteroclinic solution at infinity satisfies

0 = x′2(∞) = −ax2(∞) + 1
2ax4(∞) + C =

= (x2(∞) = 1) = −a + 1
2a + C

(5)

and therefore the respectiveC = 1
2a. Then any trajec-

tory located in the regionG satisfies the relation (4),
where|C| < 1

2a. Since any trajectory in the region
G is closed it is convenient to consider the respective
solutions in polar coordinates. Introduce polar coor-
dinates by

x(t) = r(t) sinφ(t), x′(t) = r(t) cos φ(t) (6)

Equation (1) written in polar coordinates turns to a
system:
{

φ′(t) = a sin2 φ(t)− ar2(t) sin4 φ(t) + cos2 φ(t),
r′(t) = 1

2r(t) sin 2φ(t)
(
1− a + a r2(t) sin2 φ(t)

)
.

(7)
Consider any solution of equation (1) with the initial
conditions(x(t0), x′(t0)) ∈ G. Let initial conditions
be written as

φ(t0) = φ0, r(t0) = r0, (φ0, r0) ∈ G, r0 > 0.
(8)

Lemma 1 The angular functionφ(t) of any solution
of (7), (8) is monotonically increasing.

Proof: Consider the first equation of system (7) mul-
tiplied by r2

r2φ′(t) =
= ar2 sin2 φ(t)− ar4(t) sin4 φ(t) + r2 cos2 φ(t).

(9)
Returning to(x, y) coordinates

r2φ′(t) = ax2(t)− ax4(t) + y2(t) =
= ax2(t)(1− x2(t)) + y2(t) > 0.

(10)

Sincex2(t) < 1 for any solution of (1) located in the
domainG, the angular functionφ(t) is increasing.ut
Corollary 2 Let x(t) be a solution of equation (1)
with the initial conditions inG. Then between any two
consecutive zeros ofx(t) there is exactly one point of
extremum.

4 Existence and multiplicity theorem

We can prove the following result considering the
boundary value problem (1), (3). Equation (1) has an
integral

x′2(t) = −ax2(t) +
1
2
ax4(t) + C, (11)

whereC is an arbitrary constant. Solutionsx(t; x0) of
the Cauchy problem (1), (12)

x(0) = x0, x′(0) = 0, 0 < x0 < 1 (12)
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satisfy the relation (11) whereC = ax2
0 − 1

2ax4
0. De-

note a solution of the Cauchy problem (1), (12) by
x(t;x0). The series of transformations

x′2(t; x0) = −ax2(t; x0) + 1
2ax4(t; x0) + ax2

0 − 1
2ax4

0,
dx

dt
= ±

√
−ax2(t; x0) +

1
2
ax4(t; x0) + ax2

0 −
1
2
ax4

0,

(13)
(notice thatx′(t; x0) < 0) and therefore

− dx√
−ax2(t;x0) + 1

2ax4(t; x0) + ax2
0 − 1

2ax4
0

= dt

(14)

−
0∫

x0

dx√
−ax2+ 1

2
ax4+ax2

0− 1
2
ax4

0

=

=
x0∫
0

dx√
−ax2+ 1

2
ax4+ax2

0− 1
2
ax4

0

=

=
t∫
0

dt = t

(15)

leads to

x0∫
0

dx√
−ax2+ 1

2
ax4− 1

2
ax4

0+ax2
0

=

=
√

1
a

x0∫
0

dx√
(x2

0− 1
2
x4
0)−(x2− 1

2
x4)

=

=
∣∣∣ξ = x

x0

∣∣∣ =
√

1
a

1∫
0

dξ√
(1−ξ2)− 1

2
x2
0(1−ξ4)

=

=
Tx0∫
0

dt = Tx0 ,

(16)

whereTx0 is the time needed to move on a phase plane
from (x0, 0) to the vertical axisx = 0 (a quarter of a
period). It follows then thatTx0 is increasing function
of x0.

Thus the following lemma was proved.

Lemma 3 The functionTx0 monotonically increases
(from π

2
√

a
, this will be shown below) to+∞ as x0

changes from zero to1.

The exact number of solutions for problem (1), (3) is
given by Theorem 4.

Theorem 4 Let i be a positive integer such that

i π√
a

< T <
(i + 1)π√

a
, (17)

whereT is the right end point of the interval in (3).
The Neumann problem (1), (3) has exactly2i nontriv-
ial solutions such thatx(0) = x0 6= 0, x′(0) = 0,
−1 < x0 < 1.

Proof: Consider solutions of the Cauchy problem (1),
x(0) = x0, x′(0) = 0, where0 < x0 < 1. Solu-
tions forx0 small enough behave like solutions of the
equation of variationsy′′ = −a y around the trivial
solution. The solution of the linearized equation is

y(t) = x0 cos
√

at. (18)

Due to the assumption
i π√

a
< T <

(i + 1)π√
a

solutions

y(t) along with solutionsx(t; x0) (for small enough
x0) have exactlyi extrema in the interval(0, T ) and
t = T is not an extremum point. These extrema due
to Lemma 3 move monotonically to the right asx0

increases. Solutionsx(t;x0) with 0 < x0 < 1 and
close enough to1 have not extrema in(0, 1] since the
respective trajectories are close to the upper hetero-
clinic (and the “period” of a heteroclinic solution is
infinite). Therefore there are exactlyi solutions of the
problem (1), (3). The additionali solutions are ob-
tained considering solutions withx0 ∈ (−1, 0) due to
symmetry arguments. Hence the proof. ut

The phase plane analysis was used to study mul-
tiple solutions of BVP in [8], [12], [13].

The review of some aspects of multiple solutions
of BVP is in [3]. The related results are in [4], [5].

5 Eigenvalue problem

Let us address the eigenvalue problem posed in [9].
Consider the Cauchy problem (1), (12):

x′′ = −a(x−x3), x(0) = x0, x′(0) = 0, 0 < x0 < 1.

Let a and T (in (3)) be given. We wish to findx0

such that the respective solutionsx(t; x0) of the above
problem satisfy the boundary conditionx′(T ) = 0,
i.e. x(t; x0) solve the Neumann problem (1), (3).

The following assertion provides the explicit for-
mula for a solution of (1), (12).

Lemma 5 The function

x(t, a, x0) = x0 cd




√
a(2− x2

0)
2

t; k


 , (19)

wherek =
√

x2
0

2−x2
0
, is a solution of the Cauchy prob-

lem (1), (12).

Proof: Consider equation (16) where the quarter of
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periodTx0 is given by formula

Tx0 =
√

1
a

1∫
0

dξ√
(1−ξ2)− 1

2
x2
0(1−ξ4)

=

=
√

1
a

1∫
0

dξ√
2−x2

0
2

(1−ξ2)(1− x2
0

2−x2
0

ξ2)

=

=
√

2
a(2−x2

0)

1∫
0

dξ√
(1−ξ2)(1− x2

0
2−x2

0

ξ2)

=

=
√

2
a(2−x2

0)

1∫
0

dξ√
(1−ξ2)(1−k2ξ2)

=

=
√

2
a(2−x2

0)
K(k),

(20)

where 0 < k2 = x2
0

2−x2
0

< 1. Replacingξ = sin φ(t)
we have

K(k) =
1∫

0

dξ√
(1− ξ2)(1− k2ξ2)

=

π
2∫

0

dφ√
1− k2 sinφ(t)

.

(21)
Inverse function of functionF (φ(t), k) = t

F (φ(t), k) =
∫ φ(t)

0

dψ√
1− k2 sin2 ψ(t)

= t (22)

is Jacobian amplitudeφ(t) = am(t, k) [14], [10], but
sinφ(t) = sin am(t, k) = sn(t, k). For solutions of
the problem (1), (3)

√
a(2−x2

0)
2 t =

∫ π
2

φ(t)
dψ√

1−k2 sin2 ψ(t)
=

=
∫ π

2
0

dψ√
1−k2 sin2 ψ(t)

−− ∫ φ(t)
0

dψ√
1−k2 sin2 ψ(t)

=

= K(k)− ∫ φ(t)
0

dψ√
1−k2 sin2 ψ(t)

,

(23)

F (φ(t), k) =
∫ φ(t)
0

dψ√
1−k2 sin2 ψ(t)

=

= K(k)−
√

a(2−x2
0)

2 t,
(24)

φ(t) = am


K(k)−

√
a(2− x2

0)
2

t, k


 , (25)

sinφ(t) = sin am

[
K(k)−

√
a(2−x2

0)
2 t, k

]
=

= sn

[
K(k)−

√
a(2−x2

0)
2 t, k

]
.

(26)

Note that thex(t) = x0ξ = x0 sinφ(t)

x(t) = x0 sn


K(k)−

√
a(2− x2

0)
2

t, k


 . (27)

It can be shown by using the reduction formula
sn(K − u) = cd u ([10])

x(t) = x0 cd




√
a(2− x2

0)
2

t, k


 . (28)

ut
Denotef(t, a, x0) = x′t(t, a, x0). This derivative

can be computed and the following formula is valid.
One obtains using [10, p.222] (and Wolfram Mathe-
matica) that

f(t, a, x0) = x0 cd′t

(√
a(2−x2

0)
2 t; k

)
= x0(k2 − 1)×

×
√

a(2−x2
0)

2 nd

(√
a(2−x2

0)
2 t; k

)
sd

(√
a(2−x2

0)
2 t; k

)
.

(29)
We have arrived at the statement.

Lemma 6 For givena andT the eigenvalue problem
(1), (3) can be solved by solving the below equation
with respect tox0

f(T, a, x0) = 0. (30)

Theorem 7 A solution to the Neumann problem (1),
(3) is given by (19) wherex0 is a solution of (30).

Applications of the theory of Jacobian elliptic
functions to various problems for ordinary differential
equations can be found also in [2], [7].

6 Results for n-th order equation

Many of the facts that were established previously for
the cubic case are valid also for cases of higher degree
polynomials in the right side of equations. Consider
equations of the type

x′′ = −a(x− x3),
x′′ = −a[(x− x3) + (x5 − x7)],
x′′ = −a[(x− x3) + (x5 − x7) + (x9 − x11)],
. . .
x′′ = −a[(x− x3) + (x5 − x7) + (x9 − x11) + . . .+
+(x2n−1 − x2n+1)].

(31)
All equations have only three critical points atx1,3 =
±1, x2 = 0. The origin is a center andx1,3 = ±1
both are saddle points. Two heteroclinic trajectories
connect the two saddle points. The phase portraits of
these equations are similar to that for the cubic case as
depicted in Fig. 1.

The analogues of Theorem 4 are valid also for the
equations of type (31). We formulate the following
theorem.

WSEAS TRANSACTIONS on MATHEMATICS Anita Kirichuka, Felix Sadyrbaev

E-ISSN: 2224-2880 293 Volume 17, 2018



Theorem 8 Let i be a positive integer such that

i π√
a

< T <
(i + 1)π√

a
, (32)

whereT is the right end point of the interval in (3).
The Neumann problem where equation is of type as in
equation (31) with condition (3) has exactly2i non-
trivial solutions such thatx(0) = x0 6= 0, x′(0) = 0,
−1 < x0 < 1.

Proof: The proof is similar to that for Theorem 4 be-
cause solutions of the Cauchy problem (1),x(0) =
x0, x′(0) = 0, where0 < x0 < 1 for x0 small
enough behave like solutions of the equation of varia-
tionsy′′ = −a y around the trivial solution. The solu-
tion of the linearized equation is as given in (18). Due

to the assumption
i π√

a
< T <

(i + 1)π√
a

solutions

y(t) along with solutionsx(t; x0) (for small enough
x0) have exactlyi extrema in the interval(0, T ) and
t = T is not an extremum point. At the same time
solutions withx0 tending to the critical point atx = 1
have not points of extrema since the periods of such
solutions tend to infinity asx0 goes to1. The extrema
of solutionsx(t; x0) leave the interval(0, T ) passing
through the pointT asx0 goes to1. Therefore there
are exactlyi solutions of the problem and the addi-
tional i solutions are obtained considering solutions
with x0 ∈ (−1, 0) due to symmetry arguments. ut

The valueTx0 defined in formula (20) seems to
be monotonically increasing for all equations (31)
as computations show. We believe that this can be
proved similarly to the proof of Lemma 3.

7 Example

Consider equation (1) witha = 121:

x′′ = −121(x− x3). (33)

Let the initial conditions bex(0) = x0, x′(0) = 0,
0 < x0 < 1. Then the number of solutions satisfying
the boundary conditions (2),x(0) = 0, x′(1) = 0, is
three and, symmetrically, for initial conditionsx(0) =
x0, x′(0) = 0, −1 < x0 < 0 there are also three
solutions to the problem (33), (2), totally six nontrivial
solutions. By Theorem 4, this is the case forT =
1 and i = 3. Indeed,3 π

11 < T = 1 < 4 π
11 ) in the

inequality (17).
Consider equation (30) witha = 121 and T=1, then

f(1, 121, x0) = 11x0(k2 − 1)
√

1− 1
2x2

0×
×nd

(
11

√
1− 1

2x2
0; k

)
sd

(
11

√
1− 1

2x2
0; k

)
= 0.

(34)

Figure 2:The graph off(1, 121, x0)

The graph off(1, 121, x0) is depicted in Fig. 2. There
are three zeros of (34) and, respectively, three initial
valuesx0 at x0 ≈ 0.59, x0 ≈ 0.913 andx0 ≈ 0.998.
In Fig. 3 and Fig. 4 respectively the graphs of solu-
tionsx(t) of the problem (33), (2) and its derivatives
x′(t) are depicted.

Figure 3: Graphsx(t) for solutions of the problem (33), (2),
x0 ≈ 0.59 (solid),x0 ≈ 0.913 (dashing tiny),x0 ≈ 0.998 (dash-
ing large)

Figure 4: Graphsx′(t) for solutions of the problem (33), (2),
x0 ≈ 0.59 (solid),x0 ≈ 0.913 (dashing tiny),x0 ≈ 0.998 (dash-
ing large)

For increasingT the number of zerosx0 of equation
(30) increases also and the number of solutions of the
problem (33), (2) increases consequently. The exam-
ples forT = 2 andT = 3 are given in Fig. 5 and Fig.
6 respectively.
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Figure 5: The graph off(2, 121, x0), T = 2, the number of
solutions is six

Figure 6: The graph off(3, 121, x0), T = 3, there are ten
solutions, because10 π

11
< 3 < 11 π

11
= π

8 Conclusion

The number of solutions of the boundary value prob-
lem (1), (3) depends entirely on the coefficienta (for
given T ) and is known precisely (Theorem 4). The
initial valuesx0 for solutions of boundary value prob-
lem (1), (3) can be found by solving the equation (30)
that is composed of certain Jacobian elliptic functions.
Then the solutions of the Neumann problem (1), (3)
are known analytically using the formula (19).
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